Metamath Proof Explorer


Theorem elmapssres

Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion elmapssres ABCDCADBD

Proof

Step Hyp Ref Expression
1 elmapi ABCA:CB
2 fssres A:CBDCAD:DB
3 1 2 sylan ABCDCAD:DB
4 elmapex ABCBVCV
5 4 simpld ABCBV
6 5 adantr ABCDCBV
7 4 simprd ABCCV
8 ssexg DCCVDV
9 8 ancoms CVDCDV
10 7 9 sylan ABCDCDV
11 6 10 elmapd ABCDCADBDAD:DB
12 3 11 mpbird ABCDCADBD