Metamath Proof Explorer


Theorem elmptrab2

Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015) (Revised by AV, 26-Mar-2021)

Ref Expression
Hypotheses elmptrab2.f F=xVyB|φ
elmptrab2.s1 x=Xy=Yφψ
elmptrab2.s2 x=XB=C
elmptrab2.ex BV
elmptrab2.rc YCXW
Assertion elmptrab2 YFXYCψ

Proof

Step Hyp Ref Expression
1 elmptrab2.f F=xVyB|φ
2 elmptrab2.s1 x=Xy=Yφψ
3 elmptrab2.s2 x=XB=C
4 elmptrab2.ex BV
5 elmptrab2.rc YCXW
6 4 a1i xVBV
7 1 2 3 6 elmptrab YFXXVYCψ
8 3simpc XVYCψYCψ
9 5 elexd YCXV
10 9 adantr YCψXV
11 simpl YCψYC
12 simpr YCψψ
13 10 11 12 3jca YCψXVYCψ
14 8 13 impbii XVYCψYCψ
15 7 14 bitri YFXYCψ