Metamath Proof Explorer


Theorem elmptrab

Description: Membership in a one-parameter class of sets. (Contributed by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Hypotheses elmptrab.f F=xDyB|φ
elmptrab.s1 x=Xy=Yφψ
elmptrab.s2 x=XB=C
elmptrab.ex xDBV
Assertion elmptrab YFXXDYCψ

Proof

Step Hyp Ref Expression
1 elmptrab.f F=xDyB|φ
2 elmptrab.s1 x=Xy=Yφψ
3 elmptrab.s2 x=XB=C
4 elmptrab.ex xDBV
5 1 mptrcl YFXXD
6 simp1 XDYCψXD
7 csbeq1 z=Xz/xB=X/xB
8 dfsbcq z=X[˙z/x]˙[˙w/y]˙φ[˙X/x]˙[˙w/y]˙φ
9 7 8 rabeqbidv z=Xwz/xB|[˙z/x]˙[˙w/y]˙φ=wX/xB|[˙X/x]˙[˙w/y]˙φ
10 nfcv _zyB|φ
11 nfsbc1v x[˙z/x]˙[˙w/y]˙φ
12 nfcsb1v _xz/xB
13 11 12 nfrabw _xwz/xB|[˙z/x]˙[˙w/y]˙φ
14 csbeq1a x=zB=z/xB
15 sbceq1a x=zφ[˙z/x]˙φ
16 14 15 rabeqbidv x=zyB|φ=yz/xB|[˙z/x]˙φ
17 nfcv _wz/xB
18 nfcv _yz/xB
19 nfcv _yz
20 nfsbc1v y[˙w/y]˙φ
21 19 20 nfsbcw y[˙z/x]˙[˙w/y]˙φ
22 nfv w[˙z/x]˙φ
23 sbccom [˙z/x]˙[˙w/y]˙φ[˙w/y]˙[˙z/x]˙φ
24 sbceq1a y=w[˙z/x]˙φ[˙w/y]˙[˙z/x]˙φ
25 24 equcoms w=y[˙z/x]˙φ[˙w/y]˙[˙z/x]˙φ
26 23 25 bitr4id w=y[˙z/x]˙[˙w/y]˙φ[˙z/x]˙φ
27 17 18 21 22 26 cbvrabw wz/xB|[˙z/x]˙[˙w/y]˙φ=yz/xB|[˙z/x]˙φ
28 16 27 eqtr4di x=zyB|φ=wz/xB|[˙z/x]˙[˙w/y]˙φ
29 10 13 28 cbvmpt xDyB|φ=zDwz/xB|[˙z/x]˙[˙w/y]˙φ
30 1 29 eqtri F=zDwz/xB|[˙z/x]˙[˙w/y]˙φ
31 nfv xzD
32 12 nfel1 xz/xBV
33 31 32 nfim xzDz/xBV
34 eleq1w x=zxDzD
35 14 eleq1d x=zBVz/xBV
36 34 35 imbi12d x=zxDBVzDz/xBV
37 33 36 4 chvarfv zDz/xBV
38 rabexg z/xBVwz/xB|[˙z/x]˙[˙w/y]˙φV
39 37 38 syl zDwz/xB|[˙z/x]˙[˙w/y]˙φV
40 9 30 39 fvmpt3 XDFX=wX/xB|[˙X/x]˙[˙w/y]˙φ
41 40 eleq2d XDYFXYwX/xB|[˙X/x]˙[˙w/y]˙φ
42 dfsbcq w=Y[˙w/y]˙φ[˙Y/y]˙φ
43 42 sbcbidv w=Y[˙X/x]˙[˙w/y]˙φ[˙X/x]˙[˙Y/y]˙φ
44 43 elrab YwX/xB|[˙X/x]˙[˙w/y]˙φYX/xB[˙X/x]˙[˙Y/y]˙φ
45 44 a1i XDYwX/xB|[˙X/x]˙[˙w/y]˙φYX/xB[˙X/x]˙[˙Y/y]˙φ
46 nfcvd XD_xC
47 46 3 csbiegf XDX/xB=C
48 47 eleq2d XDYX/xBYC
49 48 anbi1d XDYX/xB[˙X/x]˙[˙Y/y]˙φYC[˙X/x]˙[˙Y/y]˙φ
50 nfv xψ
51 nfv yψ
52 nfv xYC
53 50 51 52 2 sbc2iegf XDYC[˙X/x]˙[˙Y/y]˙φψ
54 53 pm5.32da XDYC[˙X/x]˙[˙Y/y]˙φYCψ
55 45 49 54 3bitrd XDYwX/xB|[˙X/x]˙[˙w/y]˙φYCψ
56 3anass XDYCψXDYCψ
57 56 baibr XDYCψXDYCψ
58 41 55 57 3bitrd XDYFXXDYCψ
59 5 6 58 pm5.21nii YFXXDYCψ