Metamath Proof Explorer


Theorem elnev

Description: Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011)

Ref Expression
Assertion elnev AVx|¬x=AV

Proof

Step Hyp Ref Expression
1 isset AVxx=A
2 df-v V=x|x=x
3 2 eqeq2i x|¬x=A=Vx|¬x=A=x|x=x
4 abbib x|¬x=A=x|x=xx¬x=Ax=x
5 equid x=x
6 5 tbt ¬x=A¬x=Ax=x
7 6 albii x¬x=Ax¬x=Ax=x
8 alnex x¬x=A¬xx=A
9 4 7 8 3bitr2i x|¬x=A=x|x=x¬xx=A
10 3 9 bitri x|¬x=A=V¬xx=A
11 10 necon2abii xx=Ax|¬x=AV
12 1 11 bitri AVx|¬x=AV