Metamath Proof Explorer


Theorem elnev

Description: Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011)

Ref Expression
Assertion elnev
|- ( A e. _V <-> { x | -. x = A } =/= _V )

Proof

Step Hyp Ref Expression
1 isset
 |-  ( A e. _V <-> E. x x = A )
2 df-v
 |-  _V = { x | x = x }
3 2 eqeq2i
 |-  ( { x | -. x = A } = _V <-> { x | -. x = A } = { x | x = x } )
4 equid
 |-  x = x
5 4 tbt
 |-  ( -. x = A <-> ( -. x = A <-> x = x ) )
6 5 albii
 |-  ( A. x -. x = A <-> A. x ( -. x = A <-> x = x ) )
7 alnex
 |-  ( A. x -. x = A <-> -. E. x x = A )
8 abbi
 |-  ( A. x ( -. x = A <-> x = x ) <-> { x | -. x = A } = { x | x = x } )
9 6 7 8 3bitr3ri
 |-  ( { x | -. x = A } = { x | x = x } <-> -. E. x x = A )
10 3 9 bitri
 |-  ( { x | -. x = A } = _V <-> -. E. x x = A )
11 10 necon2abii
 |-  ( E. x x = A <-> { x | -. x = A } =/= _V )
12 1 11 bitri
 |-  ( A e. _V <-> { x | -. x = A } =/= _V )