Step |
Hyp |
Ref |
Expression |
1 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
2 |
|
df-v |
⊢ V = { 𝑥 ∣ 𝑥 = 𝑥 } |
3 |
2
|
eqeq2i |
⊢ ( { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = V ↔ { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = { 𝑥 ∣ 𝑥 = 𝑥 } ) |
4 |
|
equid |
⊢ 𝑥 = 𝑥 |
5 |
4
|
tbt |
⊢ ( ¬ 𝑥 = 𝐴 ↔ ( ¬ 𝑥 = 𝐴 ↔ 𝑥 = 𝑥 ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ∀ 𝑥 ( ¬ 𝑥 = 𝐴 ↔ 𝑥 = 𝑥 ) ) |
7 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) |
8 |
|
abbi |
⊢ ( ∀ 𝑥 ( ¬ 𝑥 = 𝐴 ↔ 𝑥 = 𝑥 ) ↔ { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = { 𝑥 ∣ 𝑥 = 𝑥 } ) |
9 |
6 7 8
|
3bitr3ri |
⊢ ( { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = { 𝑥 ∣ 𝑥 = 𝑥 } ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) |
10 |
3 9
|
bitri |
⊢ ( { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = V ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) |
11 |
10
|
necon2abii |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 ↔ { 𝑥 ∣ ¬ 𝑥 = 𝐴 } ≠ V ) |
12 |
1 11
|
bitri |
⊢ ( 𝐴 ∈ V ↔ { 𝑥 ∣ ¬ 𝑥 = 𝐴 } ≠ V ) |