Metamath Proof Explorer


Theorem elnev

Description: Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011)

Ref Expression
Assertion elnev ( 𝐴 ∈ V ↔ { 𝑥 ∣ ¬ 𝑥 = 𝐴 } ≠ V )

Proof

Step Hyp Ref Expression
1 isset ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 )
2 df-v V = { 𝑥𝑥 = 𝑥 }
3 2 eqeq2i ( { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = V ↔ { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = { 𝑥𝑥 = 𝑥 } )
4 equid 𝑥 = 𝑥
5 4 tbt ( ¬ 𝑥 = 𝐴 ↔ ( ¬ 𝑥 = 𝐴𝑥 = 𝑥 ) )
6 5 albii ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ∀ 𝑥 ( ¬ 𝑥 = 𝐴𝑥 = 𝑥 ) )
7 alnex ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 )
8 abbi ( ∀ 𝑥 ( ¬ 𝑥 = 𝐴𝑥 = 𝑥 ) ↔ { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = { 𝑥𝑥 = 𝑥 } )
9 6 7 8 3bitr3ri ( { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = { 𝑥𝑥 = 𝑥 } ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 )
10 3 9 bitri ( { 𝑥 ∣ ¬ 𝑥 = 𝐴 } = V ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 )
11 10 necon2abii ( ∃ 𝑥 𝑥 = 𝐴 ↔ { 𝑥 ∣ ¬ 𝑥 = 𝐴 } ≠ V )
12 1 11 bitri ( 𝐴 ∈ V ↔ { 𝑥 ∣ ¬ 𝑥 = 𝐴 } ≠ V )