Metamath Proof Explorer


Theorem elopaba

Description: Membership in an ordered-pair class abstraction. (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis copsex2ga.1 A=xyφψ
Assertion elopaba Axy|ψAV×Vφ

Proof

Step Hyp Ref Expression
1 copsex2ga.1 A=xyφψ
2 elopab Axy|ψxyA=xyψ
3 1 copsex2gb xyA=xyψAV×Vφ
4 2 3 bitri Axy|ψAV×Vφ