Metamath Proof Explorer


Theorem elorvc

Description: Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Hypotheses orvcval.1 φFunX
orvcval.2 φXV
orvcval.3 φAW
Assertion elorvc φzdomXzXRRV/cAXzRA

Proof

Step Hyp Ref Expression
1 orvcval.1 φFunX
2 orvcval.2 φXV
3 orvcval.3 φAW
4 1 2 3 orvcval2 φXRRV/cA=zdomX|XzRA
5 4 eleq2d φzXRRV/cAzzdomX|XzRA
6 rabid zzdomX|XzRAzdomXXzRA
7 5 6 bitrdi φzXRRV/cAzdomXXzRA
8 7 baibd φzdomXzXRRV/cAXzRA