Metamath Proof Explorer


Theorem elpm

Description: The predicate "is a partial function". (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses elmap.1 AV
elmap.2 BV
Assertion elpm FA𝑝𝑚BFunFFB×A

Proof

Step Hyp Ref Expression
1 elmap.1 AV
2 elmap.2 BV
3 elpmg AVBVFA𝑝𝑚BFunFFB×A
4 1 2 3 mp2an FA𝑝𝑚BFunFFB×A