Metamath Proof Explorer


Theorem elpr2elpr

Description: For an element A of an unordered pair which is a subset of a given set V , there is another (maybe the same) element b of the given set V being an element of the unordered pair. (Contributed by AV, 5-Dec-2020)

Ref Expression
Assertion elpr2elpr XVYVAXYbVXY=Ab

Proof

Step Hyp Ref Expression
1 simprr A=XXVYVYV
2 preq2 b=YAb=AY
3 2 eqeq2d b=YXY=AbXY=AY
4 3 adantl A=XXVYVb=YXY=AbXY=AY
5 preq1 X=AXY=AY
6 5 eqcoms A=XXY=AY
7 6 adantr A=XXVYVXY=AY
8 1 4 7 rspcedvd A=XXVYVbVXY=Ab
9 8 ex A=XXVYVbVXY=Ab
10 simprl A=YXVYVXV
11 preq2 b=XAb=AX
12 11 eqeq2d b=XXY=AbXY=AX
13 12 adantl A=YXVYVb=XXY=AbXY=AX
14 preq2 Y=AXY=XA
15 14 eqcoms A=YXY=XA
16 prcom XA=AX
17 15 16 eqtrdi A=YXY=AX
18 17 adantr A=YXVYVXY=AX
19 10 13 18 rspcedvd A=YXVYVbVXY=Ab
20 19 ex A=YXVYVbVXY=Ab
21 9 20 jaoi A=XA=YXVYVbVXY=Ab
22 elpri AXYA=XA=Y
23 21 22 syl11 XVYVAXYbVXY=Ab
24 23 3impia XVYVAXYbVXY=Ab