Metamath Proof Explorer


Theorem elqsg

Description: Closed form of elqs . (Contributed by Rodolfo Medina, 12-Oct-2010)

Ref Expression
Assertion elqsg BVBA/RxAB=xR

Proof

Step Hyp Ref Expression
1 eqeq1 y=By=xRB=xR
2 1 rexbidv y=BxAy=xRxAB=xR
3 df-qs A/R=y|xAy=xR
4 2 3 elab2g BVBA/RxAB=xR