Metamath Proof Explorer


Theorem elre0re

Description: Specialized version of 0red without using ax-1cn and ax-cnre . (Contributed by Steven Nguyen, 28-Jan-2023)

Ref Expression
Assertion elre0re A0

Proof

Step Hyp Ref Expression
1 ax-rnegex AxA+x=0
2 readdcl AxA+x
3 eleq1 A+x=0A+x0
4 2 3 syl5ibcom AxA+x=00
5 4 rexlimdva AxA+x=00
6 1 5 mpd A0