Metamath Proof Explorer


Theorem elrefrelsrel

Description: For sets, being an element of the class of reflexive relations ( df-refrels ) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)

Ref Expression
Assertion elrefrelsrel R V R RefRels RefRel R

Proof

Step Hyp Ref Expression
1 elrelsrel R V R Rels Rel R
2 1 anbi2d R V I dom R × ran R R R Rels I dom R × ran R R Rel R
3 elrefrels2 R RefRels I dom R × ran R R R Rels
4 dfrefrel2 RefRel R I dom R × ran R R Rel R
5 2 3 4 3bitr4g R V R RefRels RefRel R