Metamath Proof Explorer


Theorem elrefrelsrel

Description: For sets, being an element of the class of reflexive relations ( df-refrels ) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)

Ref Expression
Assertion elrefrelsrel RVRRefRelsRefRelR

Proof

Step Hyp Ref Expression
1 elrelsrel RVRRelsRelR
2 1 anbi2d RVIdomR×ranRRRRelsIdomR×ranRRRelR
3 elrefrels2 RRefRelsIdomR×ranRRRRels
4 dfrefrel2 RefRelRIdomR×ranRRRelR
5 2 3 4 3bitr4g RVRRefRelsRefRelR