Metamath Proof Explorer


Theorem elringchomALTV

Description: A morphism of rings is a function. (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcbasALTV.c C=RingCatALTVU
ringcbasALTV.b B=BaseC
ringcbasALTV.u φUV
ringchomfvalALTV.h H=HomC
ringchomALTV.x φXB
ringchomALTV.y φYB
Assertion elringchomALTV φFXHYF:BaseXBaseY

Proof

Step Hyp Ref Expression
1 ringcbasALTV.c C=RingCatALTVU
2 ringcbasALTV.b B=BaseC
3 ringcbasALTV.u φUV
4 ringchomfvalALTV.h H=HomC
5 ringchomALTV.x φXB
6 ringchomALTV.y φYB
7 1 2 3 4 5 6 ringchomALTV φXHY=XRingHomY
8 7 eleq2d φFXHYFXRingHomY
9 eqid BaseX=BaseX
10 eqid BaseY=BaseY
11 9 10 rhmf FXRingHomYF:BaseXBaseY
12 8 11 syl6bi φFXHYF:BaseXBaseY