Metamath Proof Explorer


Theorem eltpg

Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014) (Proof shortened by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion eltpg AVABCDA=BA=CA=D

Proof

Step Hyp Ref Expression
1 elprg AVABCA=BA=C
2 elsng AVADA=D
3 1 2 orbi12d AVABCADA=BA=CA=D
4 df-tp BCD=BCD
5 4 eleq2i ABCDABCD
6 elun ABCDABCAD
7 5 6 bitri ABCDABCAD
8 df-3or A=BA=CA=DA=BA=CA=D
9 3 7 8 3bitr4g AVABCDA=BA=CA=D