Metamath Proof Explorer


Theorem eluzsubOLD

Description: Obsolete version of eluzsub as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eluzsubOLD MKNM+KNKM

Proof

Step Hyp Ref Expression
1 fvoveq1 M=ifMM0M+K=ifMM0+K
2 1 eleq2d M=ifMM0NM+KNifMM0+K
3 fveq2 M=ifMM0M=ifMM0
4 3 eleq2d M=ifMM0NKMNKifMM0
5 2 4 imbi12d M=ifMM0NM+KNKMNifMM0+KNKifMM0
6 oveq2 K=ifKK0ifMM0+K=ifMM0+ifKK0
7 6 fveq2d K=ifKK0ifMM0+K=ifMM0+ifKK0
8 7 eleq2d K=ifKK0NifMM0+KNifMM0+ifKK0
9 oveq2 K=ifKK0NK=NifKK0
10 9 eleq1d K=ifKK0NKifMM0NifKK0ifMM0
11 8 10 imbi12d K=ifKK0NifMM0+KNKifMM0NifMM0+ifKK0NifKK0ifMM0
12 0z 0
13 12 elimel ifMM0
14 12 elimel ifKK0
15 13 14 eluzsubi NifMM0+ifKK0NifKK0ifMM0
16 5 11 15 dedth2h MKNM+KNKM
17 16 3impia MKNM+KNKM