Metamath Proof Explorer


Theorem en3lpVD

Description: Virtual deduction proof of en3lp . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en3lpVD ¬ABBCCA

Proof

Step Hyp Ref Expression
1 pm2.1 ¬ABC=ABC=
2 df-ne ABC¬ABC=
3 2 bicomi ¬ABC=ABC
4 3 orbi1i ¬ABC=ABC=ABCABC=
5 1 4 mpbi ABCABC=
6 zfregs2 ABC¬xABCyyABCyx
7 en3lplem2VD ABBCCAxABCyyABCyx
8 7 alrimiv ABBCCAxxABCyyABCyx
9 df-ral xABCyyABCyxxxABCyyABCyx
10 8 9 sylibr ABBCCAxABCyyABCyx
11 10 con3i ¬xABCyyABCyx¬ABBCCA
12 6 11 syl ABC¬ABBCCA
13 idn1 ABC=ABC=
14 noel ¬C
15 eleq2 ABC=CABCC
16 15 notbid ABC=¬CABC¬C
17 16 biimprd ABC=¬C¬CABC
18 13 14 17 e10 ABC=¬CABC
19 tpid3g CACABC
20 19 con3i ¬CABC¬CA
21 18 20 e1a ABC=¬CA
22 simp3 ABBCCACA
23 22 con3i ¬CA¬ABBCCA
24 21 23 e1a ABC=¬ABBCCA
25 24 in1 ABC=¬ABBCCA
26 12 25 jaoi ABCABC=¬ABBCCA
27 5 26 ax-mp ¬ABBCCA