Metamath Proof Explorer


Theorem enrelmapr

Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. (Contributed by RP, 27-Apr-2021)

Ref Expression
Assertion enrelmapr AVBW𝒫A×B𝒫AB

Proof

Step Hyp Ref Expression
1 xpcomeng AVBWA×BB×A
2 pwen A×BB×A𝒫A×B𝒫B×A
3 1 2 syl AVBW𝒫A×B𝒫B×A
4 enrelmap BWAV𝒫B×A𝒫AB
5 4 ancoms AVBW𝒫B×A𝒫AB
6 entr 𝒫A×B𝒫B×A𝒫B×A𝒫AB𝒫A×B𝒫AB
7 3 5 6 syl2anc AVBW𝒫A×B𝒫AB