Metamath Proof Explorer


Theorem enrelmapr

Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. (Contributed by RP, 27-Apr-2021)

Ref Expression
Assertion enrelmapr
|- ( ( A e. V /\ B e. W ) -> ~P ( A X. B ) ~~ ( ~P A ^m B ) )

Proof

Step Hyp Ref Expression
1 xpcomeng
 |-  ( ( A e. V /\ B e. W ) -> ( A X. B ) ~~ ( B X. A ) )
2 pwen
 |-  ( ( A X. B ) ~~ ( B X. A ) -> ~P ( A X. B ) ~~ ~P ( B X. A ) )
3 1 2 syl
 |-  ( ( A e. V /\ B e. W ) -> ~P ( A X. B ) ~~ ~P ( B X. A ) )
4 enrelmap
 |-  ( ( B e. W /\ A e. V ) -> ~P ( B X. A ) ~~ ( ~P A ^m B ) )
5 4 ancoms
 |-  ( ( A e. V /\ B e. W ) -> ~P ( B X. A ) ~~ ( ~P A ^m B ) )
6 entr
 |-  ( ( ~P ( A X. B ) ~~ ~P ( B X. A ) /\ ~P ( B X. A ) ~~ ( ~P A ^m B ) ) -> ~P ( A X. B ) ~~ ( ~P A ^m B ) )
7 3 5 6 syl2anc
 |-  ( ( A e. V /\ B e. W ) -> ~P ( A X. B ) ~~ ( ~P A ^m B ) )