Step |
Hyp |
Ref |
Expression |
1 |
|
xpcomeng |
|- ( ( A e. V /\ B e. W ) -> ( A X. B ) ~~ ( B X. A ) ) |
2 |
|
pwen |
|- ( ( A X. B ) ~~ ( B X. A ) -> ~P ( A X. B ) ~~ ~P ( B X. A ) ) |
3 |
1 2
|
syl |
|- ( ( A e. V /\ B e. W ) -> ~P ( A X. B ) ~~ ~P ( B X. A ) ) |
4 |
|
enrelmap |
|- ( ( B e. W /\ A e. V ) -> ~P ( B X. A ) ~~ ( ~P A ^m B ) ) |
5 |
4
|
ancoms |
|- ( ( A e. V /\ B e. W ) -> ~P ( B X. A ) ~~ ( ~P A ^m B ) ) |
6 |
|
entr |
|- ( ( ~P ( A X. B ) ~~ ~P ( B X. A ) /\ ~P ( B X. A ) ~~ ( ~P A ^m B ) ) -> ~P ( A X. B ) ~~ ( ~P A ^m B ) ) |
7 |
3 5 6
|
syl2anc |
|- ( ( A e. V /\ B e. W ) -> ~P ( A X. B ) ~~ ( ~P A ^m B ) ) |