Metamath Proof Explorer


Theorem enrelmapr

Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. (Contributed by RP, 27-Apr-2021)

Ref Expression
Assertion enrelmapr ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐴m 𝐵 ) )

Proof

Step Hyp Ref Expression
1 xpcomeng ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) )
2 pwen ( ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) )
3 1 2 syl ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) )
4 enrelmap ( ( 𝐵𝑊𝐴𝑉 ) → 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 𝒫 𝐴m 𝐵 ) )
5 4 ancoms ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 𝒫 𝐴m 𝐵 ) )
6 entr ( ( 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 𝒫 𝐴m 𝐵 ) ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐴m 𝐵 ) )
7 3 5 6 syl2anc ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐴m 𝐵 ) )