Step |
Hyp |
Ref |
Expression |
1 |
|
xpcomeng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) |
2 |
|
pwen |
⊢ ( ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) ) |
4 |
|
enrelmap |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 𝒫 𝐴 ↑m 𝐵 ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 𝒫 𝐴 ↑m 𝐵 ) ) |
6 |
|
entr |
⊢ ( ( 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 𝒫 𝐴 ↑m 𝐵 ) ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐴 ↑m 𝐵 ) ) |
7 |
3 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐴 ↑m 𝐵 ) ) |