| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relen |
⊢ Rel ≈ |
| 2 |
1
|
brrelex1i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
| 3 |
|
pw2eng |
⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |
| 5 |
|
2onn |
⊢ 2o ∈ ω |
| 6 |
5
|
elexi |
⊢ 2o ∈ V |
| 7 |
6
|
enref |
⊢ 2o ≈ 2o |
| 8 |
|
mapen |
⊢ ( ( 2o ≈ 2o ∧ 𝐴 ≈ 𝐵 ) → ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐵 ) ) |
| 9 |
7 8
|
mpan |
⊢ ( 𝐴 ≈ 𝐵 → ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐵 ) ) |
| 10 |
1
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 11 |
|
pw2eng |
⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) |
| 12 |
|
ensym |
⊢ ( 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
| 13 |
10 11 12
|
3syl |
⊢ ( 𝐴 ≈ 𝐵 → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
| 14 |
|
entr |
⊢ ( ( ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐵 ) ∧ ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) → ( 2o ↑m 𝐴 ) ≈ 𝒫 𝐵 ) |
| 15 |
9 13 14
|
syl2anc |
⊢ ( 𝐴 ≈ 𝐵 → ( 2o ↑m 𝐴 ) ≈ 𝒫 𝐵 ) |
| 16 |
|
entr |
⊢ ( ( 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ∧ ( 2o ↑m 𝐴 ) ≈ 𝒫 𝐵 ) → 𝒫 𝐴 ≈ 𝒫 𝐵 ) |
| 17 |
4 15 16
|
syl2anc |
⊢ ( 𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵 ) |