| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bren |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 2 |
|
f1odm |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → dom 𝑓 = 𝐴 ) |
| 3 |
|
vex |
⊢ 𝑓 ∈ V |
| 4 |
3
|
dmex |
⊢ dom 𝑓 ∈ V |
| 5 |
2 4
|
eqeltrrdi |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐴 ∈ V ) |
| 6 |
|
pwexg |
⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) |
| 7 |
|
inex1g |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
| 8 |
5 6 7
|
3syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
| 9 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) |
| 10 |
|
forn |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ran 𝑓 = 𝐵 ) |
| 11 |
9 10
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ran 𝑓 = 𝐵 ) |
| 12 |
3
|
rnex |
⊢ ran 𝑓 ∈ V |
| 13 |
11 12
|
eqeltrrdi |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 ∈ V ) |
| 14 |
|
pwexg |
⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ∈ V ) |
| 15 |
|
inex1g |
⊢ ( 𝒫 𝐵 ∈ V → ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
| 16 |
13 14 15
|
3syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
| 17 |
|
f1of1 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 19 |
13
|
adantr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 20 |
|
simpr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
| 21 |
|
vex |
⊢ 𝑦 ∈ V |
| 22 |
21
|
a1i |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ V ) |
| 23 |
|
f1imaen2g |
⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ V ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ V ) ) → ( 𝑓 “ 𝑦 ) ≈ 𝑦 ) |
| 24 |
18 19 20 22 23
|
syl22anc |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑓 “ 𝑦 ) ≈ 𝑦 ) |
| 25 |
|
entr |
⊢ ( ( ( 𝑓 “ 𝑦 ) ≈ 𝑦 ∧ 𝑦 ≈ 𝐶 ) → ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) |
| 26 |
24 25
|
sylan |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑦 ≈ 𝐶 ) → ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) |
| 27 |
26
|
expl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) → ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
| 28 |
|
imassrn |
⊢ ( 𝑓 “ 𝑦 ) ⊆ ran 𝑓 |
| 29 |
28 10
|
sseqtrid |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ) |
| 30 |
9 29
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ) |
| 31 |
27 30
|
jctild |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) → ( ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ∧ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) ) |
| 32 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 33 |
21
|
elpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
| 34 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝐶 ↔ 𝑦 ≈ 𝐶 ) ) |
| 35 |
21 34
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ 𝑦 ≈ 𝐶 ) |
| 36 |
33 35
|
anbi12i |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) ) |
| 37 |
32 36
|
bitri |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) ) |
| 38 |
|
elin |
⊢ ( ( 𝑓 “ 𝑦 ) ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( 𝑓 “ 𝑦 ) ∈ 𝒫 𝐵 ∧ ( 𝑓 “ 𝑦 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 39 |
3
|
imaex |
⊢ ( 𝑓 “ 𝑦 ) ∈ V |
| 40 |
39
|
elpw |
⊢ ( ( 𝑓 “ 𝑦 ) ∈ 𝒫 𝐵 ↔ ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ) |
| 41 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑓 “ 𝑦 ) → ( 𝑥 ≈ 𝐶 ↔ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
| 42 |
39 41
|
elab |
⊢ ( ( 𝑓 “ 𝑦 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) |
| 43 |
40 42
|
anbi12i |
⊢ ( ( ( 𝑓 “ 𝑦 ) ∈ 𝒫 𝐵 ∧ ( 𝑓 “ 𝑦 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ∧ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
| 44 |
38 43
|
bitri |
⊢ ( ( 𝑓 “ 𝑦 ) ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ∧ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
| 45 |
31 37 44
|
3imtr4g |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → ( 𝑓 “ 𝑦 ) ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) |
| 46 |
|
f1ocnv |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) |
| 47 |
|
f1of1 |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 48 |
|
f1f1orn |
⊢ ( ◡ 𝑓 : 𝐵 –1-1→ 𝐴 → ◡ 𝑓 : 𝐵 –1-1-onto→ ran ◡ 𝑓 ) |
| 49 |
|
f1of1 |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ ran ◡ 𝑓 → ◡ 𝑓 : 𝐵 –1-1→ ran ◡ 𝑓 ) |
| 50 |
47 48 49
|
3syl |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 –1-1→ ran ◡ 𝑓 ) |
| 51 |
|
vex |
⊢ 𝑧 ∈ V |
| 52 |
51
|
f1imaen |
⊢ ( ( ◡ 𝑓 : 𝐵 –1-1→ ran ◡ 𝑓 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝑧 ) |
| 53 |
50 52
|
sylan |
⊢ ( ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝑧 ) |
| 54 |
|
entr |
⊢ ( ( ( ◡ 𝑓 “ 𝑧 ) ≈ 𝑧 ∧ 𝑧 ≈ 𝐶 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) |
| 55 |
53 54
|
sylan |
⊢ ( ( ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑧 ≈ 𝐶 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) |
| 56 |
55
|
expl |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
| 57 |
|
f1ofo |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 –onto→ 𝐴 ) |
| 58 |
|
imassrn |
⊢ ( ◡ 𝑓 “ 𝑧 ) ⊆ ran ◡ 𝑓 |
| 59 |
|
forn |
⊢ ( ◡ 𝑓 : 𝐵 –onto→ 𝐴 → ran ◡ 𝑓 = 𝐴 ) |
| 60 |
58 59
|
sseqtrid |
⊢ ( ◡ 𝑓 : 𝐵 –onto→ 𝐴 → ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ) |
| 61 |
57 60
|
syl |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ) |
| 62 |
56 61
|
jctild |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) → ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) ) |
| 63 |
46 62
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) → ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) ) |
| 64 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 65 |
51
|
elpw |
⊢ ( 𝑧 ∈ 𝒫 𝐵 ↔ 𝑧 ⊆ 𝐵 ) |
| 66 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≈ 𝐶 ↔ 𝑧 ≈ 𝐶 ) ) |
| 67 |
51 66
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ 𝑧 ≈ 𝐶 ) |
| 68 |
65 67
|
anbi12i |
⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) ) |
| 69 |
64 68
|
bitri |
⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) ) |
| 70 |
|
elin |
⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( ◡ 𝑓 “ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 71 |
3
|
cnvex |
⊢ ◡ 𝑓 ∈ V |
| 72 |
71
|
imaex |
⊢ ( ◡ 𝑓 “ 𝑧 ) ∈ V |
| 73 |
72
|
elpw |
⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ) |
| 74 |
|
breq1 |
⊢ ( 𝑥 = ( ◡ 𝑓 “ 𝑧 ) → ( 𝑥 ≈ 𝐶 ↔ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
| 75 |
72 74
|
elab |
⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) |
| 76 |
73 75
|
anbi12i |
⊢ ( ( ( ◡ 𝑓 “ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
| 77 |
70 76
|
bitri |
⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
| 78 |
63 69 77
|
3imtr4g |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → ( ◡ 𝑓 “ 𝑧 ) ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) |
| 79 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑧 ∈ 𝒫 𝐵 ) |
| 80 |
79
|
elpwid |
⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑧 ⊆ 𝐵 ) |
| 81 |
64 80
|
sylbi |
⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑧 ⊆ 𝐵 ) |
| 82 |
|
imaeq2 |
⊢ ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 83 |
|
f1orel |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝑓 ) |
| 84 |
|
dfrel2 |
⊢ ( Rel 𝑓 ↔ ◡ ◡ 𝑓 = 𝑓 ) |
| 85 |
83 84
|
sylib |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ ◡ 𝑓 = 𝑓 ) |
| 86 |
85
|
imaeq1d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 88 |
46 47
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 89 |
|
f1imacnv |
⊢ ( ( ◡ 𝑓 : 𝐵 –1-1→ 𝐴 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = 𝑧 ) |
| 90 |
88 89
|
sylan |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = 𝑧 ) |
| 91 |
87 90
|
eqtr3d |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = 𝑧 ) |
| 92 |
82 91
|
sylan9eqr |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) → ( 𝑓 “ 𝑦 ) = 𝑧 ) |
| 93 |
92
|
eqcomd |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) |
| 94 |
93
|
ex |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
| 95 |
81 94
|
sylan2 |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
| 96 |
95
|
adantrl |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
| 97 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑦 ∈ 𝒫 𝐴 ) |
| 98 |
97
|
elpwid |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑦 ⊆ 𝐴 ) |
| 99 |
32 98
|
sylbi |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑦 ⊆ 𝐴 ) |
| 100 |
|
imaeq2 |
⊢ ( 𝑧 = ( 𝑓 “ 𝑦 ) → ( ◡ 𝑓 “ 𝑧 ) = ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) |
| 101 |
|
f1imacnv |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) = 𝑦 ) |
| 102 |
17 101
|
sylan |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) = 𝑦 ) |
| 103 |
100 102
|
sylan9eqr |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 = ( 𝑓 “ 𝑦 ) ) → ( ◡ 𝑓 “ 𝑧 ) = 𝑦 ) |
| 104 |
103
|
eqcomd |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 = ( 𝑓 “ 𝑦 ) ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) |
| 105 |
104
|
ex |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑧 = ( 𝑓 “ 𝑦 ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 106 |
99 105
|
sylan2 |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) → ( 𝑧 = ( 𝑓 “ 𝑦 ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 107 |
106
|
adantrr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) → ( 𝑧 = ( 𝑓 “ 𝑦 ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) ) |
| 108 |
96 107
|
impbid |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ↔ 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
| 109 |
108
|
ex |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ↔ 𝑧 = ( 𝑓 “ 𝑦 ) ) ) ) |
| 110 |
8 16 45 78 109
|
en3d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ≈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 111 |
110
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ≈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 112 |
1 111
|
sylbi |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ≈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
| 113 |
|
df-pw |
⊢ 𝒫 𝐴 = { 𝑥 ∣ 𝑥 ⊆ 𝐴 } |
| 114 |
113
|
ineq1i |
⊢ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) |
| 115 |
|
inab |
⊢ ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } |
| 116 |
114 115
|
eqtri |
⊢ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } |
| 117 |
|
df-pw |
⊢ 𝒫 𝐵 = { 𝑥 ∣ 𝑥 ⊆ 𝐵 } |
| 118 |
117
|
ineq1i |
⊢ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = ( { 𝑥 ∣ 𝑥 ⊆ 𝐵 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) |
| 119 |
|
inab |
⊢ ( { 𝑥 ∣ 𝑥 ⊆ 𝐵 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } |
| 120 |
118 119
|
eqtri |
⊢ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } |
| 121 |
112 116 120
|
3brtr3g |
⊢ ( 𝐴 ≈ 𝐵 → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } ) |