| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bren |
|- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |
| 2 |
|
f1odm |
|- ( f : A -1-1-onto-> B -> dom f = A ) |
| 3 |
|
vex |
|- f e. _V |
| 4 |
3
|
dmex |
|- dom f e. _V |
| 5 |
2 4
|
eqeltrrdi |
|- ( f : A -1-1-onto-> B -> A e. _V ) |
| 6 |
|
pwexg |
|- ( A e. _V -> ~P A e. _V ) |
| 7 |
|
inex1g |
|- ( ~P A e. _V -> ( ~P A i^i { x | x ~~ C } ) e. _V ) |
| 8 |
5 6 7
|
3syl |
|- ( f : A -1-1-onto-> B -> ( ~P A i^i { x | x ~~ C } ) e. _V ) |
| 9 |
|
f1ofo |
|- ( f : A -1-1-onto-> B -> f : A -onto-> B ) |
| 10 |
|
forn |
|- ( f : A -onto-> B -> ran f = B ) |
| 11 |
9 10
|
syl |
|- ( f : A -1-1-onto-> B -> ran f = B ) |
| 12 |
3
|
rnex |
|- ran f e. _V |
| 13 |
11 12
|
eqeltrrdi |
|- ( f : A -1-1-onto-> B -> B e. _V ) |
| 14 |
|
pwexg |
|- ( B e. _V -> ~P B e. _V ) |
| 15 |
|
inex1g |
|- ( ~P B e. _V -> ( ~P B i^i { x | x ~~ C } ) e. _V ) |
| 16 |
13 14 15
|
3syl |
|- ( f : A -1-1-onto-> B -> ( ~P B i^i { x | x ~~ C } ) e. _V ) |
| 17 |
|
f1of1 |
|- ( f : A -1-1-onto-> B -> f : A -1-1-> B ) |
| 18 |
17
|
adantr |
|- ( ( f : A -1-1-onto-> B /\ y C_ A ) -> f : A -1-1-> B ) |
| 19 |
13
|
adantr |
|- ( ( f : A -1-1-onto-> B /\ y C_ A ) -> B e. _V ) |
| 20 |
|
simpr |
|- ( ( f : A -1-1-onto-> B /\ y C_ A ) -> y C_ A ) |
| 21 |
|
vex |
|- y e. _V |
| 22 |
21
|
a1i |
|- ( ( f : A -1-1-onto-> B /\ y C_ A ) -> y e. _V ) |
| 23 |
|
f1imaen2g |
|- ( ( ( f : A -1-1-> B /\ B e. _V ) /\ ( y C_ A /\ y e. _V ) ) -> ( f " y ) ~~ y ) |
| 24 |
18 19 20 22 23
|
syl22anc |
|- ( ( f : A -1-1-onto-> B /\ y C_ A ) -> ( f " y ) ~~ y ) |
| 25 |
|
entr |
|- ( ( ( f " y ) ~~ y /\ y ~~ C ) -> ( f " y ) ~~ C ) |
| 26 |
24 25
|
sylan |
|- ( ( ( f : A -1-1-onto-> B /\ y C_ A ) /\ y ~~ C ) -> ( f " y ) ~~ C ) |
| 27 |
26
|
expl |
|- ( f : A -1-1-onto-> B -> ( ( y C_ A /\ y ~~ C ) -> ( f " y ) ~~ C ) ) |
| 28 |
|
imassrn |
|- ( f " y ) C_ ran f |
| 29 |
28 10
|
sseqtrid |
|- ( f : A -onto-> B -> ( f " y ) C_ B ) |
| 30 |
9 29
|
syl |
|- ( f : A -1-1-onto-> B -> ( f " y ) C_ B ) |
| 31 |
27 30
|
jctild |
|- ( f : A -1-1-onto-> B -> ( ( y C_ A /\ y ~~ C ) -> ( ( f " y ) C_ B /\ ( f " y ) ~~ C ) ) ) |
| 32 |
|
elin |
|- ( y e. ( ~P A i^i { x | x ~~ C } ) <-> ( y e. ~P A /\ y e. { x | x ~~ C } ) ) |
| 33 |
21
|
elpw |
|- ( y e. ~P A <-> y C_ A ) |
| 34 |
|
breq1 |
|- ( x = y -> ( x ~~ C <-> y ~~ C ) ) |
| 35 |
21 34
|
elab |
|- ( y e. { x | x ~~ C } <-> y ~~ C ) |
| 36 |
33 35
|
anbi12i |
|- ( ( y e. ~P A /\ y e. { x | x ~~ C } ) <-> ( y C_ A /\ y ~~ C ) ) |
| 37 |
32 36
|
bitri |
|- ( y e. ( ~P A i^i { x | x ~~ C } ) <-> ( y C_ A /\ y ~~ C ) ) |
| 38 |
|
elin |
|- ( ( f " y ) e. ( ~P B i^i { x | x ~~ C } ) <-> ( ( f " y ) e. ~P B /\ ( f " y ) e. { x | x ~~ C } ) ) |
| 39 |
3
|
imaex |
|- ( f " y ) e. _V |
| 40 |
39
|
elpw |
|- ( ( f " y ) e. ~P B <-> ( f " y ) C_ B ) |
| 41 |
|
breq1 |
|- ( x = ( f " y ) -> ( x ~~ C <-> ( f " y ) ~~ C ) ) |
| 42 |
39 41
|
elab |
|- ( ( f " y ) e. { x | x ~~ C } <-> ( f " y ) ~~ C ) |
| 43 |
40 42
|
anbi12i |
|- ( ( ( f " y ) e. ~P B /\ ( f " y ) e. { x | x ~~ C } ) <-> ( ( f " y ) C_ B /\ ( f " y ) ~~ C ) ) |
| 44 |
38 43
|
bitri |
|- ( ( f " y ) e. ( ~P B i^i { x | x ~~ C } ) <-> ( ( f " y ) C_ B /\ ( f " y ) ~~ C ) ) |
| 45 |
31 37 44
|
3imtr4g |
|- ( f : A -1-1-onto-> B -> ( y e. ( ~P A i^i { x | x ~~ C } ) -> ( f " y ) e. ( ~P B i^i { x | x ~~ C } ) ) ) |
| 46 |
|
f1ocnv |
|- ( f : A -1-1-onto-> B -> `' f : B -1-1-onto-> A ) |
| 47 |
|
f1of1 |
|- ( `' f : B -1-1-onto-> A -> `' f : B -1-1-> A ) |
| 48 |
|
f1f1orn |
|- ( `' f : B -1-1-> A -> `' f : B -1-1-onto-> ran `' f ) |
| 49 |
|
f1of1 |
|- ( `' f : B -1-1-onto-> ran `' f -> `' f : B -1-1-> ran `' f ) |
| 50 |
47 48 49
|
3syl |
|- ( `' f : B -1-1-onto-> A -> `' f : B -1-1-> ran `' f ) |
| 51 |
|
vex |
|- z e. _V |
| 52 |
51
|
f1imaen |
|- ( ( `' f : B -1-1-> ran `' f /\ z C_ B ) -> ( `' f " z ) ~~ z ) |
| 53 |
50 52
|
sylan |
|- ( ( `' f : B -1-1-onto-> A /\ z C_ B ) -> ( `' f " z ) ~~ z ) |
| 54 |
|
entr |
|- ( ( ( `' f " z ) ~~ z /\ z ~~ C ) -> ( `' f " z ) ~~ C ) |
| 55 |
53 54
|
sylan |
|- ( ( ( `' f : B -1-1-onto-> A /\ z C_ B ) /\ z ~~ C ) -> ( `' f " z ) ~~ C ) |
| 56 |
55
|
expl |
|- ( `' f : B -1-1-onto-> A -> ( ( z C_ B /\ z ~~ C ) -> ( `' f " z ) ~~ C ) ) |
| 57 |
|
f1ofo |
|- ( `' f : B -1-1-onto-> A -> `' f : B -onto-> A ) |
| 58 |
|
imassrn |
|- ( `' f " z ) C_ ran `' f |
| 59 |
|
forn |
|- ( `' f : B -onto-> A -> ran `' f = A ) |
| 60 |
58 59
|
sseqtrid |
|- ( `' f : B -onto-> A -> ( `' f " z ) C_ A ) |
| 61 |
57 60
|
syl |
|- ( `' f : B -1-1-onto-> A -> ( `' f " z ) C_ A ) |
| 62 |
56 61
|
jctild |
|- ( `' f : B -1-1-onto-> A -> ( ( z C_ B /\ z ~~ C ) -> ( ( `' f " z ) C_ A /\ ( `' f " z ) ~~ C ) ) ) |
| 63 |
46 62
|
syl |
|- ( f : A -1-1-onto-> B -> ( ( z C_ B /\ z ~~ C ) -> ( ( `' f " z ) C_ A /\ ( `' f " z ) ~~ C ) ) ) |
| 64 |
|
elin |
|- ( z e. ( ~P B i^i { x | x ~~ C } ) <-> ( z e. ~P B /\ z e. { x | x ~~ C } ) ) |
| 65 |
51
|
elpw |
|- ( z e. ~P B <-> z C_ B ) |
| 66 |
|
breq1 |
|- ( x = z -> ( x ~~ C <-> z ~~ C ) ) |
| 67 |
51 66
|
elab |
|- ( z e. { x | x ~~ C } <-> z ~~ C ) |
| 68 |
65 67
|
anbi12i |
|- ( ( z e. ~P B /\ z e. { x | x ~~ C } ) <-> ( z C_ B /\ z ~~ C ) ) |
| 69 |
64 68
|
bitri |
|- ( z e. ( ~P B i^i { x | x ~~ C } ) <-> ( z C_ B /\ z ~~ C ) ) |
| 70 |
|
elin |
|- ( ( `' f " z ) e. ( ~P A i^i { x | x ~~ C } ) <-> ( ( `' f " z ) e. ~P A /\ ( `' f " z ) e. { x | x ~~ C } ) ) |
| 71 |
3
|
cnvex |
|- `' f e. _V |
| 72 |
71
|
imaex |
|- ( `' f " z ) e. _V |
| 73 |
72
|
elpw |
|- ( ( `' f " z ) e. ~P A <-> ( `' f " z ) C_ A ) |
| 74 |
|
breq1 |
|- ( x = ( `' f " z ) -> ( x ~~ C <-> ( `' f " z ) ~~ C ) ) |
| 75 |
72 74
|
elab |
|- ( ( `' f " z ) e. { x | x ~~ C } <-> ( `' f " z ) ~~ C ) |
| 76 |
73 75
|
anbi12i |
|- ( ( ( `' f " z ) e. ~P A /\ ( `' f " z ) e. { x | x ~~ C } ) <-> ( ( `' f " z ) C_ A /\ ( `' f " z ) ~~ C ) ) |
| 77 |
70 76
|
bitri |
|- ( ( `' f " z ) e. ( ~P A i^i { x | x ~~ C } ) <-> ( ( `' f " z ) C_ A /\ ( `' f " z ) ~~ C ) ) |
| 78 |
63 69 77
|
3imtr4g |
|- ( f : A -1-1-onto-> B -> ( z e. ( ~P B i^i { x | x ~~ C } ) -> ( `' f " z ) e. ( ~P A i^i { x | x ~~ C } ) ) ) |
| 79 |
|
simpl |
|- ( ( z e. ~P B /\ z e. { x | x ~~ C } ) -> z e. ~P B ) |
| 80 |
79
|
elpwid |
|- ( ( z e. ~P B /\ z e. { x | x ~~ C } ) -> z C_ B ) |
| 81 |
64 80
|
sylbi |
|- ( z e. ( ~P B i^i { x | x ~~ C } ) -> z C_ B ) |
| 82 |
|
imaeq2 |
|- ( y = ( `' f " z ) -> ( f " y ) = ( f " ( `' f " z ) ) ) |
| 83 |
|
f1orel |
|- ( f : A -1-1-onto-> B -> Rel f ) |
| 84 |
|
dfrel2 |
|- ( Rel f <-> `' `' f = f ) |
| 85 |
83 84
|
sylib |
|- ( f : A -1-1-onto-> B -> `' `' f = f ) |
| 86 |
85
|
imaeq1d |
|- ( f : A -1-1-onto-> B -> ( `' `' f " ( `' f " z ) ) = ( f " ( `' f " z ) ) ) |
| 87 |
86
|
adantr |
|- ( ( f : A -1-1-onto-> B /\ z C_ B ) -> ( `' `' f " ( `' f " z ) ) = ( f " ( `' f " z ) ) ) |
| 88 |
46 47
|
syl |
|- ( f : A -1-1-onto-> B -> `' f : B -1-1-> A ) |
| 89 |
|
f1imacnv |
|- ( ( `' f : B -1-1-> A /\ z C_ B ) -> ( `' `' f " ( `' f " z ) ) = z ) |
| 90 |
88 89
|
sylan |
|- ( ( f : A -1-1-onto-> B /\ z C_ B ) -> ( `' `' f " ( `' f " z ) ) = z ) |
| 91 |
87 90
|
eqtr3d |
|- ( ( f : A -1-1-onto-> B /\ z C_ B ) -> ( f " ( `' f " z ) ) = z ) |
| 92 |
82 91
|
sylan9eqr |
|- ( ( ( f : A -1-1-onto-> B /\ z C_ B ) /\ y = ( `' f " z ) ) -> ( f " y ) = z ) |
| 93 |
92
|
eqcomd |
|- ( ( ( f : A -1-1-onto-> B /\ z C_ B ) /\ y = ( `' f " z ) ) -> z = ( f " y ) ) |
| 94 |
93
|
ex |
|- ( ( f : A -1-1-onto-> B /\ z C_ B ) -> ( y = ( `' f " z ) -> z = ( f " y ) ) ) |
| 95 |
81 94
|
sylan2 |
|- ( ( f : A -1-1-onto-> B /\ z e. ( ~P B i^i { x | x ~~ C } ) ) -> ( y = ( `' f " z ) -> z = ( f " y ) ) ) |
| 96 |
95
|
adantrl |
|- ( ( f : A -1-1-onto-> B /\ ( y e. ( ~P A i^i { x | x ~~ C } ) /\ z e. ( ~P B i^i { x | x ~~ C } ) ) ) -> ( y = ( `' f " z ) -> z = ( f " y ) ) ) |
| 97 |
|
simpl |
|- ( ( y e. ~P A /\ y e. { x | x ~~ C } ) -> y e. ~P A ) |
| 98 |
97
|
elpwid |
|- ( ( y e. ~P A /\ y e. { x | x ~~ C } ) -> y C_ A ) |
| 99 |
32 98
|
sylbi |
|- ( y e. ( ~P A i^i { x | x ~~ C } ) -> y C_ A ) |
| 100 |
|
imaeq2 |
|- ( z = ( f " y ) -> ( `' f " z ) = ( `' f " ( f " y ) ) ) |
| 101 |
|
f1imacnv |
|- ( ( f : A -1-1-> B /\ y C_ A ) -> ( `' f " ( f " y ) ) = y ) |
| 102 |
17 101
|
sylan |
|- ( ( f : A -1-1-onto-> B /\ y C_ A ) -> ( `' f " ( f " y ) ) = y ) |
| 103 |
100 102
|
sylan9eqr |
|- ( ( ( f : A -1-1-onto-> B /\ y C_ A ) /\ z = ( f " y ) ) -> ( `' f " z ) = y ) |
| 104 |
103
|
eqcomd |
|- ( ( ( f : A -1-1-onto-> B /\ y C_ A ) /\ z = ( f " y ) ) -> y = ( `' f " z ) ) |
| 105 |
104
|
ex |
|- ( ( f : A -1-1-onto-> B /\ y C_ A ) -> ( z = ( f " y ) -> y = ( `' f " z ) ) ) |
| 106 |
99 105
|
sylan2 |
|- ( ( f : A -1-1-onto-> B /\ y e. ( ~P A i^i { x | x ~~ C } ) ) -> ( z = ( f " y ) -> y = ( `' f " z ) ) ) |
| 107 |
106
|
adantrr |
|- ( ( f : A -1-1-onto-> B /\ ( y e. ( ~P A i^i { x | x ~~ C } ) /\ z e. ( ~P B i^i { x | x ~~ C } ) ) ) -> ( z = ( f " y ) -> y = ( `' f " z ) ) ) |
| 108 |
96 107
|
impbid |
|- ( ( f : A -1-1-onto-> B /\ ( y e. ( ~P A i^i { x | x ~~ C } ) /\ z e. ( ~P B i^i { x | x ~~ C } ) ) ) -> ( y = ( `' f " z ) <-> z = ( f " y ) ) ) |
| 109 |
108
|
ex |
|- ( f : A -1-1-onto-> B -> ( ( y e. ( ~P A i^i { x | x ~~ C } ) /\ z e. ( ~P B i^i { x | x ~~ C } ) ) -> ( y = ( `' f " z ) <-> z = ( f " y ) ) ) ) |
| 110 |
8 16 45 78 109
|
en3d |
|- ( f : A -1-1-onto-> B -> ( ~P A i^i { x | x ~~ C } ) ~~ ( ~P B i^i { x | x ~~ C } ) ) |
| 111 |
110
|
exlimiv |
|- ( E. f f : A -1-1-onto-> B -> ( ~P A i^i { x | x ~~ C } ) ~~ ( ~P B i^i { x | x ~~ C } ) ) |
| 112 |
1 111
|
sylbi |
|- ( A ~~ B -> ( ~P A i^i { x | x ~~ C } ) ~~ ( ~P B i^i { x | x ~~ C } ) ) |
| 113 |
|
df-pw |
|- ~P A = { x | x C_ A } |
| 114 |
113
|
ineq1i |
|- ( ~P A i^i { x | x ~~ C } ) = ( { x | x C_ A } i^i { x | x ~~ C } ) |
| 115 |
|
inab |
|- ( { x | x C_ A } i^i { x | x ~~ C } ) = { x | ( x C_ A /\ x ~~ C ) } |
| 116 |
114 115
|
eqtri |
|- ( ~P A i^i { x | x ~~ C } ) = { x | ( x C_ A /\ x ~~ C ) } |
| 117 |
|
df-pw |
|- ~P B = { x | x C_ B } |
| 118 |
117
|
ineq1i |
|- ( ~P B i^i { x | x ~~ C } ) = ( { x | x C_ B } i^i { x | x ~~ C } ) |
| 119 |
|
inab |
|- ( { x | x C_ B } i^i { x | x ~~ C } ) = { x | ( x C_ B /\ x ~~ C ) } |
| 120 |
118 119
|
eqtri |
|- ( ~P B i^i { x | x ~~ C } ) = { x | ( x C_ B /\ x ~~ C ) } |
| 121 |
112 116 120
|
3brtr3g |
|- ( A ~~ B -> { x | ( x C_ A /\ x ~~ C ) } ~~ { x | ( x C_ B /\ x ~~ C ) } ) |