| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limenpsi.1 |
⊢ Lim 𝐴 |
| 2 |
|
difexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ { ∅ } ) ∈ V ) |
| 3 |
|
limsuc |
⊢ ( Lim 𝐴 → ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴 ) |
| 5 |
4
|
biimpi |
⊢ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) |
| 6 |
|
nsuceq0 |
⊢ suc 𝑥 ≠ ∅ |
| 7 |
|
eldifsn |
⊢ ( suc 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ↔ ( suc 𝑥 ∈ 𝐴 ∧ suc 𝑥 ≠ ∅ ) ) |
| 8 |
5 6 7
|
sylanblrc |
⊢ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ) |
| 9 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
| 10 |
1 9
|
ax-mp |
⊢ Ord 𝐴 |
| 11 |
|
ordelon |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
| 12 |
10 11
|
mpan |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) |
| 13 |
|
ordelon |
⊢ ( ( Ord 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
| 14 |
10 13
|
mpan |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ On ) |
| 15 |
|
suc11 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 16 |
12 14 15
|
syl2an |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 17 |
8 16
|
dom3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐴 ∖ { ∅ } ) ∈ V ) → 𝐴 ≼ ( 𝐴 ∖ { ∅ } ) ) |
| 18 |
2 17
|
mpdan |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( 𝐴 ∖ { ∅ } ) ) |
| 19 |
|
difss |
⊢ ( 𝐴 ∖ { ∅ } ) ⊆ 𝐴 |
| 20 |
|
ssdomg |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ { ∅ } ) ⊆ 𝐴 → ( 𝐴 ∖ { ∅ } ) ≼ 𝐴 ) ) |
| 21 |
19 20
|
mpi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ { ∅ } ) ≼ 𝐴 ) |
| 22 |
|
sbth |
⊢ ( ( 𝐴 ≼ ( 𝐴 ∖ { ∅ } ) ∧ ( 𝐴 ∖ { ∅ } ) ≼ 𝐴 ) → 𝐴 ≈ ( 𝐴 ∖ { ∅ } ) ) |
| 23 |
18 21 22
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ ( 𝐴 ∖ { ∅ } ) ) |