Metamath Proof Explorer


Theorem enrelmap

Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021)

Ref Expression
Assertion enrelmap ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐵m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xpcomeng ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) )
2 pwen ( ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) )
3 1 2 syl ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) )
4 xpexg ( ( 𝐵𝑊𝐴𝑉 ) → ( 𝐵 × 𝐴 ) ∈ V )
5 4 ancoms ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 × 𝐴 ) ∈ V )
6 pw2eng ( ( 𝐵 × 𝐴 ) ∈ V → 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) )
7 5 6 syl ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) )
8 entr ( ( 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) )
9 3 7 8 syl2anc ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) )
10 pw2eng ( 𝐵𝑊 → 𝒫 𝐵 ≈ ( 2om 𝐵 ) )
11 enrefg ( 𝐴𝑉𝐴𝐴 )
12 mapen ( ( 𝒫 𝐵 ≈ ( 2om 𝐵 ) ∧ 𝐴𝐴 ) → ( 𝒫 𝐵m 𝐴 ) ≈ ( ( 2om 𝐵 ) ↑m 𝐴 ) )
13 10 11 12 syl2anr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝒫 𝐵m 𝐴 ) ≈ ( ( 2om 𝐵 ) ↑m 𝐴 ) )
14 2on 2o ∈ On
15 simpr ( ( 𝐴𝑉𝐵𝑊 ) → 𝐵𝑊 )
16 simpl ( ( 𝐴𝑉𝐵𝑊 ) → 𝐴𝑉 )
17 mapxpen ( ( 2o ∈ On ∧ 𝐵𝑊𝐴𝑉 ) → ( ( 2om 𝐵 ) ↑m 𝐴 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) )
18 14 15 16 17 mp3an2i ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 2om 𝐵 ) ↑m 𝐴 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) )
19 entr ( ( ( 𝒫 𝐵m 𝐴 ) ≈ ( ( 2om 𝐵 ) ↑m 𝐴 ) ∧ ( ( 2om 𝐵 ) ↑m 𝐴 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) ) → ( 𝒫 𝐵m 𝐴 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) )
20 13 18 19 syl2anc ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝒫 𝐵m 𝐴 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) )
21 20 ensymd ( ( 𝐴𝑉𝐵𝑊 ) → ( 2om ( 𝐵 × 𝐴 ) ) ≈ ( 𝒫 𝐵m 𝐴 ) )
22 entr ( ( 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 2om ( 𝐵 × 𝐴 ) ) ∧ ( 2om ( 𝐵 × 𝐴 ) ) ≈ ( 𝒫 𝐵m 𝐴 ) ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐵m 𝐴 ) )
23 9 21 22 syl2anc ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐵m 𝐴 ) )