Step |
Hyp |
Ref |
Expression |
1 |
|
xpcomeng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) |
2 |
|
pwen |
⊢ ( ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) ) |
4 |
|
xpexg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 × 𝐴 ) ∈ V ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 × 𝐴 ) ∈ V ) |
6 |
|
pw2eng |
⊢ ( ( 𝐵 × 𝐴 ) ∈ V → 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) |
8 |
|
entr |
⊢ ( ( 𝒫 ( 𝐴 × 𝐵 ) ≈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝒫 ( 𝐵 × 𝐴 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) |
9 |
3 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) |
10 |
|
pw2eng |
⊢ ( 𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) |
11 |
|
enrefg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴 ) |
12 |
|
mapen |
⊢ ( ( 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ∧ 𝐴 ≈ 𝐴 ) → ( 𝒫 𝐵 ↑m 𝐴 ) ≈ ( ( 2o ↑m 𝐵 ) ↑m 𝐴 ) ) |
13 |
10 11 12
|
syl2anr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝒫 𝐵 ↑m 𝐴 ) ≈ ( ( 2o ↑m 𝐵 ) ↑m 𝐴 ) ) |
14 |
|
2on |
⊢ 2o ∈ On |
15 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) |
16 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) |
17 |
|
mapxpen |
⊢ ( ( 2o ∈ On ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐴 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) |
18 |
14 15 16 17
|
mp3an2i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 2o ↑m 𝐵 ) ↑m 𝐴 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) |
19 |
|
entr |
⊢ ( ( ( 𝒫 𝐵 ↑m 𝐴 ) ≈ ( ( 2o ↑m 𝐵 ) ↑m 𝐴 ) ∧ ( ( 2o ↑m 𝐵 ) ↑m 𝐴 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) → ( 𝒫 𝐵 ↑m 𝐴 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) |
20 |
13 18 19
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝒫 𝐵 ↑m 𝐴 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ) |
21 |
20
|
ensymd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐵 × 𝐴 ) ) ≈ ( 𝒫 𝐵 ↑m 𝐴 ) ) |
22 |
|
entr |
⊢ ( ( 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ∧ ( 2o ↑m ( 𝐵 × 𝐴 ) ) ≈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐵 ↑m 𝐴 ) ) |
23 |
9 21 22
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ≈ ( 𝒫 𝐵 ↑m 𝐴 ) ) |