Step |
Hyp |
Ref |
Expression |
1 |
|
xpcomeng |
|- ( ( A e. V /\ B e. W ) -> ( A X. B ) ~~ ( B X. A ) ) |
2 |
|
pwen |
|- ( ( A X. B ) ~~ ( B X. A ) -> ~P ( A X. B ) ~~ ~P ( B X. A ) ) |
3 |
1 2
|
syl |
|- ( ( A e. V /\ B e. W ) -> ~P ( A X. B ) ~~ ~P ( B X. A ) ) |
4 |
|
xpexg |
|- ( ( B e. W /\ A e. V ) -> ( B X. A ) e. _V ) |
5 |
4
|
ancoms |
|- ( ( A e. V /\ B e. W ) -> ( B X. A ) e. _V ) |
6 |
|
pw2eng |
|- ( ( B X. A ) e. _V -> ~P ( B X. A ) ~~ ( 2o ^m ( B X. A ) ) ) |
7 |
5 6
|
syl |
|- ( ( A e. V /\ B e. W ) -> ~P ( B X. A ) ~~ ( 2o ^m ( B X. A ) ) ) |
8 |
|
entr |
|- ( ( ~P ( A X. B ) ~~ ~P ( B X. A ) /\ ~P ( B X. A ) ~~ ( 2o ^m ( B X. A ) ) ) -> ~P ( A X. B ) ~~ ( 2o ^m ( B X. A ) ) ) |
9 |
3 7 8
|
syl2anc |
|- ( ( A e. V /\ B e. W ) -> ~P ( A X. B ) ~~ ( 2o ^m ( B X. A ) ) ) |
10 |
|
pw2eng |
|- ( B e. W -> ~P B ~~ ( 2o ^m B ) ) |
11 |
|
enrefg |
|- ( A e. V -> A ~~ A ) |
12 |
|
mapen |
|- ( ( ~P B ~~ ( 2o ^m B ) /\ A ~~ A ) -> ( ~P B ^m A ) ~~ ( ( 2o ^m B ) ^m A ) ) |
13 |
10 11 12
|
syl2anr |
|- ( ( A e. V /\ B e. W ) -> ( ~P B ^m A ) ~~ ( ( 2o ^m B ) ^m A ) ) |
14 |
|
2on |
|- 2o e. On |
15 |
|
simpr |
|- ( ( A e. V /\ B e. W ) -> B e. W ) |
16 |
|
simpl |
|- ( ( A e. V /\ B e. W ) -> A e. V ) |
17 |
|
mapxpen |
|- ( ( 2o e. On /\ B e. W /\ A e. V ) -> ( ( 2o ^m B ) ^m A ) ~~ ( 2o ^m ( B X. A ) ) ) |
18 |
14 15 16 17
|
mp3an2i |
|- ( ( A e. V /\ B e. W ) -> ( ( 2o ^m B ) ^m A ) ~~ ( 2o ^m ( B X. A ) ) ) |
19 |
|
entr |
|- ( ( ( ~P B ^m A ) ~~ ( ( 2o ^m B ) ^m A ) /\ ( ( 2o ^m B ) ^m A ) ~~ ( 2o ^m ( B X. A ) ) ) -> ( ~P B ^m A ) ~~ ( 2o ^m ( B X. A ) ) ) |
20 |
13 18 19
|
syl2anc |
|- ( ( A e. V /\ B e. W ) -> ( ~P B ^m A ) ~~ ( 2o ^m ( B X. A ) ) ) |
21 |
20
|
ensymd |
|- ( ( A e. V /\ B e. W ) -> ( 2o ^m ( B X. A ) ) ~~ ( ~P B ^m A ) ) |
22 |
|
entr |
|- ( ( ~P ( A X. B ) ~~ ( 2o ^m ( B X. A ) ) /\ ( 2o ^m ( B X. A ) ) ~~ ( ~P B ^m A ) ) -> ~P ( A X. B ) ~~ ( ~P B ^m A ) ) |
23 |
9 21 22
|
syl2anc |
|- ( ( A e. V /\ B e. W ) -> ~P ( A X. B ) ~~ ( ~P B ^m A ) ) |