Metamath Proof Explorer


Theorem enrelmap

Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021)

Ref Expression
Assertion enrelmap A V B W 𝒫 A × B 𝒫 B A

Proof

Step Hyp Ref Expression
1 xpcomeng A V B W A × B B × A
2 pwen A × B B × A 𝒫 A × B 𝒫 B × A
3 1 2 syl A V B W 𝒫 A × B 𝒫 B × A
4 xpexg B W A V B × A V
5 4 ancoms A V B W B × A V
6 pw2eng B × A V 𝒫 B × A 2 𝑜 B × A
7 5 6 syl A V B W 𝒫 B × A 2 𝑜 B × A
8 entr 𝒫 A × B 𝒫 B × A 𝒫 B × A 2 𝑜 B × A 𝒫 A × B 2 𝑜 B × A
9 3 7 8 syl2anc A V B W 𝒫 A × B 2 𝑜 B × A
10 pw2eng B W 𝒫 B 2 𝑜 B
11 enrefg A V A A
12 mapen 𝒫 B 2 𝑜 B A A 𝒫 B A 2 𝑜 B A
13 10 11 12 syl2anr A V B W 𝒫 B A 2 𝑜 B A
14 2on 2 𝑜 On
15 simpr A V B W B W
16 simpl A V B W A V
17 mapxpen 2 𝑜 On B W A V 2 𝑜 B A 2 𝑜 B × A
18 14 15 16 17 mp3an2i A V B W 2 𝑜 B A 2 𝑜 B × A
19 entr 𝒫 B A 2 𝑜 B A 2 𝑜 B A 2 𝑜 B × A 𝒫 B A 2 𝑜 B × A
20 13 18 19 syl2anc A V B W 𝒫 B A 2 𝑜 B × A
21 20 ensymd A V B W 2 𝑜 B × A 𝒫 B A
22 entr 𝒫 A × B 2 𝑜 B × A 2 𝑜 B × A 𝒫 B A 𝒫 A × B 𝒫 B A
23 9 21 22 syl2anc A V B W 𝒫 A × B 𝒫 B A