Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002) Avoid ax-un . (Revised by BTernaryTau, 23-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ensn1.1 | |
|
Assertion | ensn1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1.1 | |
|
2 | snex | |
|
3 | f1oeq1 | |
|
4 | 0ex | |
|
5 | 1 4 | f1osn | |
6 | 2 3 5 | ceqsexv2d | |
7 | snex | |
|
8 | snex | |
|
9 | breng | |
|
10 | 7 8 9 | mp2an | |
11 | 6 10 | mpbir | |
12 | df1o2 | |
|
13 | 11 12 | breqtrri | |