Metamath Proof Explorer


Theorem ensn1

Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002) Avoid ax-un . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Hypothesis ensn1.1 AV
Assertion ensn1 A1𝑜

Proof

Step Hyp Ref Expression
1 ensn1.1 AV
2 snex AV
3 f1oeq1 f=Af:A1-1 ontoA:A1-1 onto
4 0ex V
5 1 4 f1osn A:A1-1 onto
6 2 3 5 ceqsexv2d ff:A1-1 onto
7 snex AV
8 snex V
9 breng AVVAff:A1-1 onto
10 7 8 9 mp2an Aff:A1-1 onto
11 6 10 mpbir A
12 df1o2 1𝑜=
13 11 12 breqtrri A1𝑜