Metamath Proof Explorer


Theorem epihom

Description: An epimorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isepi.b B=BaseC
isepi.h H=HomC
isepi.o ·˙=compC
isepi.e E=EpiC
isepi.c φCCat
isepi.x φXB
isepi.y φYB
Assertion epihom φXEYXHY

Proof

Step Hyp Ref Expression
1 isepi.b B=BaseC
2 isepi.h H=HomC
3 isepi.o ·˙=compC
4 isepi.e E=EpiC
5 isepi.c φCCat
6 isepi.x φXB
7 isepi.y φYB
8 1 2 3 4 5 6 7 isepi φfXEYfXHYzBFungYHzgXY·˙zf-1
9 simpl fXHYzBFungYHzgXY·˙zf-1fXHY
10 8 9 syl6bi φfXEYfXHY
11 10 ssrdv φXEYXHY