Metamath Proof Explorer


Theorem isepi

Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isepi.b B=BaseC
isepi.h H=HomC
isepi.o ·˙=compC
isepi.e E=EpiC
isepi.c φCCat
isepi.x φXB
isepi.y φYB
Assertion isepi φFXEYFXHYzBFungYHzgXY·˙zF-1

Proof

Step Hyp Ref Expression
1 isepi.b B=BaseC
2 isepi.h H=HomC
3 isepi.o ·˙=compC
4 isepi.e E=EpiC
5 isepi.c φCCat
6 isepi.x φXB
7 isepi.y φYB
8 eqid oppCatC=oppCatC
9 8 1 oppcbas B=BaseoppCatC
10 eqid HomoppCatC=HomoppCatC
11 eqid compoppCatC=compoppCatC
12 eqid MonooppCatC=MonooppCatC
13 8 oppccat CCatoppCatCCat
14 5 13 syl φoppCatCCat
15 9 10 11 12 14 7 6 ismon φFYMonooppCatCXFYHomoppCatCXzBFungzHomoppCatCYFzYcompoppCatCXg-1
16 8 5 12 4 oppcmon φYMonooppCatCX=XEY
17 16 eleq2d φFYMonooppCatCXFXEY
18 2 8 oppchom YHomoppCatCX=XHY
19 18 a1i φYHomoppCatCX=XHY
20 19 eleq2d φFYHomoppCatCXFXHY
21 2 8 oppchom zHomoppCatCY=YHz
22 21 a1i φzBzHomoppCatCY=YHz
23 simpr φzBzB
24 7 adantr φzBYB
25 6 adantr φzBXB
26 1 3 8 23 24 25 oppcco φzBFzYcompoppCatCXg=gXY·˙zF
27 22 26 mpteq12dv φzBgzHomoppCatCYFzYcompoppCatCXg=gYHzgXY·˙zF
28 27 cnveqd φzBgzHomoppCatCYFzYcompoppCatCXg-1=gYHzgXY·˙zF-1
29 28 funeqd φzBFungzHomoppCatCYFzYcompoppCatCXg-1FungYHzgXY·˙zF-1
30 29 ralbidva φzBFungzHomoppCatCYFzYcompoppCatCXg-1zBFungYHzgXY·˙zF-1
31 20 30 anbi12d φFYHomoppCatCXzBFungzHomoppCatCYFzYcompoppCatCXg-1FXHYzBFungYHzgXY·˙zF-1
32 15 17 31 3bitr3d φFXEYFXHYzBFungYHzgXY·˙zF-1