Description: Definition of an epimorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isepi.b | |
|
isepi.h | |
||
isepi.o | |
||
isepi.e | |
||
isepi.c | |
||
isepi.x | |
||
isepi.y | |
||
Assertion | isepi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isepi.b | |
|
2 | isepi.h | |
|
3 | isepi.o | |
|
4 | isepi.e | |
|
5 | isepi.c | |
|
6 | isepi.x | |
|
7 | isepi.y | |
|
8 | eqid | |
|
9 | 8 1 | oppcbas | |
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 8 | oppccat | |
14 | 5 13 | syl | |
15 | 9 10 11 12 14 7 6 | ismon | |
16 | 8 5 12 4 | oppcmon | |
17 | 16 | eleq2d | |
18 | 2 8 | oppchom | |
19 | 18 | a1i | |
20 | 19 | eleq2d | |
21 | 2 8 | oppchom | |
22 | 21 | a1i | |
23 | simpr | |
|
24 | 7 | adantr | |
25 | 6 | adantr | |
26 | 1 3 8 23 24 25 | oppcco | |
27 | 22 26 | mpteq12dv | |
28 | 27 | cnveqd | |
29 | 28 | funeqd | |
30 | 29 | ralbidva | |
31 | 20 30 | anbi12d | |
32 | 15 17 31 | 3bitr3d | |