Metamath Proof Explorer


Theorem epii

Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses isepi.b B=BaseC
isepi.h H=HomC
isepi.o ·˙=compC
isepi.e E=EpiC
isepi.c φCCat
isepi.x φXB
isepi.y φYB
epii.z φZB
epii.f φFXEY
epii.g φGYHZ
epii.k φKYHZ
Assertion epii φGXY·˙ZF=KXY·˙ZFG=K

Proof

Step Hyp Ref Expression
1 isepi.b B=BaseC
2 isepi.h H=HomC
3 isepi.o ·˙=compC
4 isepi.e E=EpiC
5 isepi.c φCCat
6 isepi.x φXB
7 isepi.y φYB
8 epii.z φZB
9 epii.f φFXEY
10 epii.g φGYHZ
11 epii.k φKYHZ
12 eqid oppCatC=oppCatC
13 1 3 12 8 7 6 oppcco φFZYcompoppCatCXG=GXY·˙ZF
14 1 3 12 8 7 6 oppcco φFZYcompoppCatCXK=KXY·˙ZF
15 13 14 eqeq12d φFZYcompoppCatCXG=FZYcompoppCatCXKGXY·˙ZF=KXY·˙ZF
16 12 1 oppcbas B=BaseoppCatC
17 eqid HomoppCatC=HomoppCatC
18 eqid compoppCatC=compoppCatC
19 eqid MonooppCatC=MonooppCatC
20 12 oppccat CCatoppCatCCat
21 5 20 syl φoppCatCCat
22 12 5 19 4 oppcmon φYMonooppCatCX=XEY
23 9 22 eleqtrrd φFYMonooppCatCX
24 2 12 oppchom ZHomoppCatCY=YHZ
25 10 24 eleqtrrdi φGZHomoppCatCY
26 11 24 eleqtrrdi φKZHomoppCatCY
27 16 17 18 19 21 7 6 8 23 25 26 moni φFZYcompoppCatCXG=FZYcompoppCatCXKG=K
28 15 27 bitr3d φGXY·˙ZF=KXY·˙ZFG=K