Metamath Proof Explorer


Theorem epnsymrel

Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022)

Ref Expression
Assertion epnsymrel ¬SymRelE

Proof

Step Hyp Ref Expression
1 epnsym E-1E
2 1 neii ¬E-1=E
3 2 intnanr ¬E-1=ERelE
4 dfsymrel4 SymRelEE-1=ERelE
5 3 4 mtbir ¬SymRelE