Metamath Proof Explorer


Theorem epweonALT

Description: Alternate proof of epweon , shorter but requiring ax-un . (Contributed by NM, 1-Nov-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion epweonALT EWeOn

Proof

Step Hyp Ref Expression
1 onfr EFrOn
2 eloni xOnOrdx
3 eloni yOnOrdy
4 ordtri3or OrdxOrdyxyx=yyx
5 epel xEyxy
6 biid x=yx=y
7 epel yExyx
8 5 6 7 3orbi123i xEyx=yyExxyx=yyx
9 4 8 sylibr OrdxOrdyxEyx=yyEx
10 2 3 9 syl2an xOnyOnxEyx=yyEx
11 10 rgen2 xOnyOnxEyx=yyEx
12 dfwe2 EWeOnEFrOnxOnyOnxEyx=yyEx
13 1 11 12 mpbir2an EWeOn