Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
eqab2
Next ⟩
r2alan
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqab2
Description:
Implication of a class abstraction.
(Contributed by
Peter Mazsa
, 16-Apr-2019)
Ref
Expression
Assertion
eqab2
⊢
∀
x
x
∈
A
↔
φ
→
∀
x
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
biimp
⊢
x
∈
A
↔
φ
→
x
∈
A
→
φ
2
1
alimi
⊢
∀
x
x
∈
A
↔
φ
→
∀
x
x
∈
A
→
φ
3
df-ral
⊢
∀
x
∈
A
φ
↔
∀
x
x
∈
A
→
φ
4
2
3
sylibr
⊢
∀
x
x
∈
A
↔
φ
→
∀
x
∈
A
φ