Metamath Proof Explorer


Theorem eqab2

Description: Implication of a class abstraction. (Contributed by Peter Mazsa, 16-Apr-2019)

Ref Expression
Assertion eqab2 x x A φ x A φ

Proof

Step Hyp Ref Expression
1 biimp x A φ x A φ
2 1 alimi x x A φ x x A φ
3 df-ral x A φ x x A φ
4 2 3 sylibr x x A φ x A φ