Metamath Proof Explorer


Theorem eqbrrdv2

Description: Other version of eqbrrdiv . (Contributed by Rodolfo Medina, 30-Sep-2010)

Ref Expression
Hypothesis eqbrrdv2.1 RelARelBφxAyxBy
Assertion eqbrrdv2 RelARelBφA=B

Proof

Step Hyp Ref Expression
1 eqbrrdv2.1 RelARelBφxAyxBy
2 df-br xAyxyA
3 df-br xByxyB
4 1 2 3 3bitr3g RelARelBφxyAxyB
5 4 eqrelrdv2 RelARelBRelARelBφA=B
6 5 anabss5 RelARelBφA=B