Metamath Proof Explorer


Theorem eqbrrdva

Description: Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017)

Ref Expression
Hypotheses eqbrrdva.1 φAC×D
eqbrrdva.2 φBC×D
eqbrrdva.3 φxCyDxAyxBy
Assertion eqbrrdva φA=B

Proof

Step Hyp Ref Expression
1 eqbrrdva.1 φAC×D
2 eqbrrdva.2 φBC×D
3 eqbrrdva.3 φxCyDxAyxBy
4 xpss C×DV×V
5 1 4 sstrdi φAV×V
6 df-rel RelAAV×V
7 5 6 sylibr φRelA
8 2 4 sstrdi φBV×V
9 df-rel RelBBV×V
10 8 9 sylibr φRelB
11 1 ssbrd φxAyxC×Dy
12 brxp xC×DyxCyD
13 11 12 imbitrdi φxAyxCyD
14 2 ssbrd φxByxC×Dy
15 14 12 imbitrdi φxByxCyD
16 3 3expib φxCyDxAyxBy
17 13 15 16 pm5.21ndd φxAyxBy
18 7 10 17 eqbrrdv φA=B