Metamath Proof Explorer


Theorem eqelb

Description: Substitution of equal classes into element relation. (Contributed by Peter Mazsa, 17-Jul-2019)

Ref Expression
Assertion eqelb A=BACA=BBC

Proof

Step Hyp Ref Expression
1 simpl B=AACB=A
2 eqeltr B=AACBC
3 1 2 jca B=AACB=ABC
4 eqcom B=AA=B
5 4 anbi1i B=AACA=BAC
6 4 anbi1i B=ABCA=BBC
7 3 5 6 3imtr3i A=BACA=BBC
8 simpl A=BBCA=B
9 eqeltr A=BBCAC
10 8 9 jca A=BBCA=BAC
11 7 10 impbii A=BACA=BBC