Metamath Proof Explorer


Theorem eqeq12dOLD

Description: Obsolete version of eqeq12d as of 23-Oct-2024. (Contributed by NM, 5-Aug-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses eqeq12dOLD.1 φA=B
eqeq12dOLD.2 φC=D
Assertion eqeq12dOLD φA=CB=D

Proof

Step Hyp Ref Expression
1 eqeq12dOLD.1 φA=B
2 eqeq12dOLD.2 φC=D
3 eqeq12OLD A=BC=DA=CB=D
4 1 2 3 syl2anc φA=CB=D