Metamath Proof Explorer


Theorem eqeqan12dOLD

Description: Obsolete version of eqeqan12d as of 23-Oct-2024. (Contributed by NM, 9-Aug-1994) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 20-Nov-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses eqeqan12dOLD.1 φA=B
eqeqan12dOLD.2 ψC=D
Assertion eqeqan12dOLD φψA=CB=D

Proof

Step Hyp Ref Expression
1 eqeqan12dOLD.1 φA=B
2 eqeqan12dOLD.2 ψC=D
3 1 adantr φψA=B
4 2 adantl φψC=D
5 3 4 eqeq12dOLD φψA=CB=D