Metamath Proof Explorer


Theorem eqlei

Description: Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999) (Revised by Alexander van der Vekens, 20-Mar-2018)

Ref Expression
Hypothesis lt.1 A
Assertion eqlei A=BAB

Proof

Step Hyp Ref Expression
1 lt.1 A
2 eleq1a AB=AB
3 1 2 ax-mp B=AB
4 3 eqcoms A=BB
5 letri3 ABA=BABBA
6 1 5 mpan BA=BABBA
7 simpl ABBAAB
8 6 7 syl6bi BA=BAB
9 4 8 mpcom A=BAB