Metamath Proof Explorer


Theorem eqneltrd

Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses eqneltrd.1 φA=B
eqneltrd.2 φ¬BC
Assertion eqneltrd φ¬AC

Proof

Step Hyp Ref Expression
1 eqneltrd.1 φA=B
2 eqneltrd.2 φ¬BC
3 1 eleq1d φACBC
4 2 3 mtbird φ¬AC