Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 13-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqneltrrd.1 | |
|
eqneltrrd.2 | |
||
Assertion | eqneltrrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrrd.1 | |
|
2 | eqneltrrd.2 | |
|
3 | 1 | eqcomd | |
4 | 3 2 | eqneltrd | |