Metamath Proof Explorer


Theorem eqopab2b

Description: Equivalence of ordered pair abstraction equality and biconditional. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker eqopab2bw when possible. (Contributed by Mario Carneiro, 4-Jan-2017) (New usage is discouraged.)

Ref Expression
Assertion eqopab2b xy|φ=xy|ψxyφψ

Proof

Step Hyp Ref Expression
1 ssopab2b xy|φxy|ψxyφψ
2 ssopab2b xy|ψxy|φxyψφ
3 1 2 anbi12i xy|φxy|ψxy|ψxy|φxyφψxyψφ
4 eqss xy|φ=xy|ψxy|φxy|ψxy|ψxy|φ
5 2albiim xyφψxyφψxyψφ
6 3 4 5 3bitr4i xy|φ=xy|ψxyφψ