Metamath Proof Explorer


Theorem eqopab2bw

Description: Equivalence of ordered pair abstraction equality and biconditional. Version of eqopab2b with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 4-Jan-2017) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion eqopab2bw xy|φ=xy|ψxyφψ

Proof

Step Hyp Ref Expression
1 ssopab2bw xy|φxy|ψxyφψ
2 ssopab2bw xy|ψxy|φxyψφ
3 1 2 anbi12i xy|φxy|ψxy|ψxy|φxyφψxyψφ
4 eqss xy|φ=xy|ψxy|φxy|ψxy|ψxy|φ
5 2albiim xyφψxyφψxyψφ
6 3 4 5 3bitr4i xy|φ=xy|ψxyφψ