Metamath Proof Explorer


Theorem eqrdv

Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996)

Ref Expression
Hypothesis eqrdv.1 φxAxB
Assertion eqrdv φA=B

Proof

Step Hyp Ref Expression
1 eqrdv.1 φxAxB
2 1 alrimiv φxxAxB
3 dfcleq A=BxxAxB
4 2 3 sylibr φA=B