Metamath Proof Explorer


Theorem eqrel2

Description: Equality of relations. (Contributed by Peter Mazsa, 8-Mar-2019)

Ref Expression
Assertion eqrel2 RelARelBA=BxyxAyxBy

Proof

Step Hyp Ref Expression
1 ssrel3 RelAABxyxAyxBy
2 ssrel3 RelBBAxyxByxAy
3 1 2 bi2anan9 RelARelBABBAxyxAyxByxyxByxAy
4 eqss A=BABBA
5 2albiim xyxAyxByxyxAyxByxyxByxAy
6 3 4 5 3bitr4g RelARelBA=BxyxAyxBy