Metamath Proof Explorer


Theorem eqsbc2VD

Description: Virtual deduction proof of eqsbc2 . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eqsbc2VD AB[˙A/x]˙C=xC=A

Proof

Step Hyp Ref Expression
1 idn1 ABAB
2 eqsbc1 AB[˙A/x]˙x=CA=C
3 1 2 e1a AB[˙A/x]˙x=CA=C
4 eqcom C=xx=C
5 4 sbcbii [˙A/x]˙C=x[˙A/x]˙x=C
6 5 a1i AB[˙A/x]˙C=x[˙A/x]˙x=C
7 1 6 e1a AB[˙A/x]˙C=x[˙A/x]˙x=C
8 idn2 AB,[˙A/x]˙C=x[˙A/x]˙C=x
9 biimp [˙A/x]˙C=x[˙A/x]˙x=C[˙A/x]˙C=x[˙A/x]˙x=C
10 7 8 9 e12 AB,[˙A/x]˙C=x[˙A/x]˙x=C
11 biimp [˙A/x]˙x=CA=C[˙A/x]˙x=CA=C
12 3 10 11 e12 AB,[˙A/x]˙C=xA=C
13 eqcom A=CC=A
14 12 13 e2bi AB,[˙A/x]˙C=xC=A
15 14 in2 AB[˙A/x]˙C=xC=A
16 idn2 AB,C=AC=A
17 16 13 e2bir AB,C=AA=C
18 biimpr [˙A/x]˙x=CA=CA=C[˙A/x]˙x=C
19 3 17 18 e12 AB,C=A[˙A/x]˙x=C
20 biimpr [˙A/x]˙C=x[˙A/x]˙x=C[˙A/x]˙x=C[˙A/x]˙C=x
21 7 19 20 e12 AB,C=A[˙A/x]˙C=x
22 21 in2 ABC=A[˙A/x]˙C=x
23 impbi [˙A/x]˙C=xC=AC=A[˙A/x]˙C=x[˙A/x]˙C=xC=A
24 15 22 23 e11 AB[˙A/x]˙C=xC=A
25 24 in1 AB[˙A/x]˙C=xC=A