Metamath Proof Explorer


Theorem eqsn

Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Assertion eqsn AA=BxAx=B

Proof

Step Hyp Ref Expression
1 df-ne A¬A=
2 biorf ¬A=A=BA=A=B
3 1 2 sylbi AA=BA=A=B
4 dfss3 ABxAxB
5 sssn ABA=A=B
6 velsn xBx=B
7 6 ralbii xAxBxAx=B
8 4 5 7 3bitr3i A=A=BxAx=B
9 3 8 bitrdi AA=BxAx=B