Metamath Proof Explorer


Theorem eqtr2id

Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998)

Ref Expression
Hypotheses eqtr2id.1 A=B
eqtr2id.2 φB=C
Assertion eqtr2id φC=A

Proof

Step Hyp Ref Expression
1 eqtr2id.1 A=B
2 eqtr2id.2 φB=C
3 1 2 eqtrid φA=C
4 3 eqcomd φC=A