Metamath Proof Explorer


Theorem eqvrel0

Description: The null class is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion eqvrel0 EqvRel

Proof

Step Hyp Ref Expression
1 disjALTV0 Disj
2 1 disjimi EqvRel
3 coss0 =
4 3 eqvreleqi EqvRelEqvRel
5 2 4 mpbi EqvRel